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ABSTRACT

There is evidence that chemical exposure during development can cause irreversible impairments of the human
developing nervous system. Therefore, testing compounds for their developmentally neurotoxic potential has high priority
for different stakeholders: academia, industry, and regulatory bodies. Due to the resource-intensity of current
developmental neurotoxicity (DNT) in vivo guidelines, alternative methods that are scientifically valid and have a high
predictivity for humans are especially desired by regulators. Here, we review availability of stem—/progenitor cell-based in
vitro methods for DNT evaluation that is based on the concept of neurodevelopmental process assessment. These test
methods are assembled into a DNT in vitro testing battery. Gaps in this testing battery addressing research needs are also

pointed out.
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There is evidence that chemical exposure during develop-
ment can cause irreversible impairments of the human de-
veloping nervous system (Andersen et al., 2000; Bearer, 2001;
Claudio, 2001; Grandjean and Landrigan, 2006, 2014; Mendola
et al., 2002; Rodier, 1995; Slikker, 1994). Neurological damage
ranging from subtle to severe imposes significant burdens on
affected individuals, their families, and society (Goldman and
Koduru, 2000; Weiss and Lambert, 2000). Therefore, testing
compounds for their developmentally neurotoxic potential
has high priority for different stakeholders: academia, indus-
try, and regulatory bodies (Bal-Price et al., 2015; Crofton et al.,
2014; Fritsche et al., 2017, 2018). Due to the resource intensity
of current DNT in vivo guidelines, alternative methods that
are scientifically valid and have a high predictivity for

humans are especially desired by regulators (Bal-Price et al.,
2012, 2015, 2018a; Crofton et al., 2011; Fritsche et al., 2017,
2018; Lein et al., 2005).

Development of these alternative methods are based on
the strategy that the complex procedure of brain develop-
ment is disassembled into spatiotemporal neurodevelopmen-
tal processes that are necessary for forming a brain.
According to the adverse outcome pathway concept, such are
key events for DNT that can be tested for adverse effects of
compounds in in vitro assays (Bal-Price et al., 2015, 2018a). To
avoid species differences in responses to compound exposure
(Baumann et al., 2016; Dach et al., 2017; Gassmann et al., 2010;
Harrill et al.,, 2011a; Masjosthusmann et al., 2018), key event-
related DNT evaluation is preferably using human cells, ie,
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neural stem/progenitor cells (NS/PC) including human-in-
duced pluripotent stem cell (hiPSC)-derived NPC as a source
(Bal-Price et al., 2018b; Singh et al., 2016). In this article, we
will summarize the current state of the art on NS/PC-based
methods for evaluation of neurodevelopmental toxicity. DNT
methods published until April 2014 were assembled in a sys-
tematic review earlier (Fritsche et al., 2015).

ESC DIFFERENTIATION TO NEUROEPITHELIAL
PRECURSORS (NEP)/INDUCTION OF NEURONAL
ROSETTES

Tests for studying compound effects on the early neurodevelop-
mental endpoint stem cell differentiation to NEP based on human
embryonic stem cells (hESC) were developed (summarized in
Fritsche et al., 2015; Shinde et al., 2015; Waldmann et al., 2014).
Here, rosette morphology and/or gene expression and viability are
measured. In addition, a teratogenicity index was developed as a
test method for distinguishing between DNT-specific and cyto-
toxic compound effects that promotes performing transcriptome-
based DNT studies at noncytotoxic concentrations (Waldmann
et al., 2014). In a recent work, disturbance of neural rosette forma-
tion from hESC was studied in the context of toxicant-dependent
altered DNA methylation (Du et al., 2018). Similar to hESC, hiPSC
also form neural rosettes that further mature to neurons when
injected into mouse motorcortex (Malchenko et al., 2014).

NPC PROLIFERATION

Proliferation of neural progenitor cells determines brain size (de
Groot et al.,, 2005). Different cell systems are available to study
effects on proliferation in vitro: hESC-generated NPC, primary
hNPC, hiPSC-derived NPC, the human umbilical cord blood
(hUCB)-NSC line or ReNcell CX-based systems assessing prolifera-
tion in two-dimensional (2D) cultures with the bromodeoxyuridine
(BrdU) or ethynyldeoxyuridine (EdU) assay that quantifies incorpo-
ration of the thymidine analogue BrdU or EdU into the DNA via flu-
orescence or luminescence-labeled antibodies, or by quantifying
Ki67 expression. A variety of groups used hESC-based methods for
studying the effects of single (summarized in Fritsche et al., 2015;
Sohn et al., 2017; Wang et al., 2016) or multiple (Behl et al., 2015;
Radio et al., 2015) compounds on NPC proliferation. Lately, the fre-
quency of cell cycles per day was calculated from the number of
hESC-NSC, which was counted daily using a Neubauer hemocy-
tometer (Vichier-Guerre et al., 2017). While this is a cheap and easy
method, it has a high variability and needs verification by an addi-
tional established method like the BrdU assay.

Also, 3D NPC aggregates generated from primary human
material (Lonza, Belgium; NPC1 Assay; Bal-Price et al., 2018a) or
from hiPSC (Hofrichter et al., 2017) called neurospheres are used
for assessing compound effects on NPC proliferation. Here, the
diameter increase of individual spheres over time or BrdU incor-
poration are two different ways of measuring cell replication
(Baumann et al., 2015, 2016; Fritsche et al., 2015). The increase in
sphere diameter over time of single spheres plated in wells of a
96-well plate is a fast and cheap possibly first tier screening
method for analyzing cell proliferation.

NPC APOPTOSIS

Apoptosis is a well-balanced process during brain development
with alterations in both directions, increase or decrease, having
negative implications for organ development (Hakem et al,

B(11)Tubulin

Figure 1. hNPC (Lonza, Verviers, Belgium) were plated onto poly p-lysin/lami-
nin-coated glass slides. After 24 hours, cells were fixed with paraformaldehyde
and stained with antibodies against GFAP and p(III)tubulin. Nuclei were stained
with Hoechst. Scale bar = 50um

1998; Uzquiano et al., 2018). It can be measured by different
methods in vitro ranging from early events like mitochondria
calcium or cytochrome c release or annexin V presentation, in-
termediate processes like caspase activation or late apoptotic
activities like nuclear condensation, micronucleus formation, or
chromatin disintegration. Several stem cell-based cell systems
are suitable for detection of xenobiotic-induced apoptosis, ie,
hESC-NPC and ReNcell CX culture, primary hNPC growing as
monolayers in 2D, or as neurospheres in 3D (summarized in
Fritsche et al., 2015). Lately, the neurosphere system was used
for studying the effects of gestational age and sex on
methylmercury-induced apoptosis by quantification of con-
densed nuclei (Edoff et al., 2017). With the ReNcell CX culture, a
high content imaging analysis (HCA) assay based on multi-
plexed activated caspase-3/-7 (apoptosis) and protease (viabil-
ity) activities. This method was applied to a comparative study
of mouse cortical NPC (Millipore, Temecula, CA), immortalized
NPC (ReNcell CX, Millipore), hESC-derived NSC (ArunA
Biomedical, Athens, GA), and hiPSC-derived pure neuronal cul-
tures (iCell, Cellular Dynamics International, Madison, WI) us-
ing 12 positive and negative compounds impressively
demonstrating different susceptibilities toward compound-
induced apoptosis between species and between brain cells of
different developmental stages (Druwe et al., 2015). Another
comparative study assessed caspase-3/-7 activation by multiple
compounds in a 384-well format using primary hNPC growing
as monolayers (ThermoFisher, Waltham, Massachusetts), the
neuroblastoma cell line SH-SY5Y, and the immortalized fetal
mesencephalic cell line LUHMES. These different cell types
show different sensitivities toward compound-induced cas-
pase-3/-7 activation (Tong et al., 2017). A different commercial
hNPC source are ENStem-ATM hNPCs (ArunA Biomedical,
Athens, Georgia). These cells growing in monolayers were used
for multiplexed imaging analyses of live/dead/apoptotic cells by
calcein AM/PI stainings in 96-well plates (Kim et al., 2016).

RADIAL GLIA PROLIFERATION

The multitudes of radial glia cell types play diverse key roles
during cerebral cortex development (Gotz and Huttner, 2005;
Uzquiano et al., 2018). Stem cell-based in vitro methods for
studying compound effects on radial glia are sparse. Primary
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hNPC (Lonza, Verviers, Belgium) growing as neurospheres is
one cell system producing migrating, nestin+/GFAP+ cells that
have radial glia-like morphology after 24 h in differentiation cul-
ture (Figure 1; Bal-Price et al., 2018a). These differentiated hNPC
express a variety of radial glia cell markers and respond to bone
morphogenic protein (BMP)2 with increased astrocyte differenti-
ation (Masjosthusmann et al., 2018). Radial glia can also be dif-
ferentiated from rosette-forming hESC or hiPSC (Malchenko
et al., 2014).

MIGRATION OF NEURAL CREST CELLS (NCC)/
RADIAL GLIA/NEURONS

Different neural cell types need proper migration during devel-
opment. During embryogenesis, NCC migrate to distinct parts of
the embryo developing into a variety of extracerebral cells and
tissues causing diseases like cleft palate, hearing loss, Morbus
Hirschsprung, or CHARGE syndrome when defective (Dupin and
Sommer, 2012; Mayor and Theveneau, 2013). NCC migration can
be studied with an in vitro assay, the “MINC Assay”, based on
neural crest cells (NCC) that are differentiated from hESC
(Zimmer et al., 2012). There are two different ways to perform
the MINC Assay: the scratch method (Dreser et al., 2015; Pallocca
et al., 2016; Zimmer et al., 2012, 2014) or the recently developed
stamp method (Nyffeler et al., 2017) with the latter being more
robust.

Cortex development involves radial glia migration leading to
the development of a scaffold that is subsequently used by neu-
rons to migrate along these glial fibers and reach their final cor-
tical destination (Borrell and Gotz, 2014). One well-characterized
migration assay is part of the “Neurosphere Assay” (NPC2; Bal-
Price et al., 2018a). Migration distance that cells cover by radially
migrating out of the plated neurosphere is analyzed either man-
ually using programs like Image] (Bal-Price et al., 2018a; Barenys
et al., 2017; Baumann et al., 2015, 2016; Edoff et al., 2017; Fritsche
et al., 2015; Ivanov et al.,, 2016) or by HCA using the software
“Omnisphero” (Schmuck et al., 2017). An important issue when
evaluating effects of compounds on NPC migration with the
‘Neurosphere Assay’ is to distinguish between specific effects
on migration and secondary migration effects due to cytotoxic-
ity. Our recent data shows that migration distance or pattern,
which determines the size of the total migration area, defines
the magnitude of signal of viability assays like the Cell Titer
Blue Assay (CTB Assay; Promega) because it is related to cell
number. A different viability/cytotoxicity assay measuring a
readout not directly dependent on cell number, like LDH leak-
age, indicates the specific effects of methylmercury (MeHgCl) on
migration without producing cell death at two different time
points (Figs. 2A and 2B). Similarly, epigallocatechin gallate
(EGCG) inhibits adhesion and migration of hNPC thereby chang-
ing the migration pattern and area (Figure 2C; Bal-Price et al.,
2017; Barenys et al., 2017). After 3 days of migration in the pres-
ence of EGCG, the CTB assay suggests that EGCG reduces cell vi-
ability (Figure 2D). However, FACS analyses identifying annexin
V-/PI-positive cells clearly show that EGCG does not cause cell
death, but diminishes the cell area with access to the CTB sub-
strate (Figure 2E).

Migrated cells of the NPC2 assay form a 2-layered cell layer
with neurons migrating on top of the glia cells (Alépée et al.,
2014; Baumann et al., 2016). This enables measuring not only
glia cell migration, but also the neuronal migration by assessing
individual neuronal positions using the software Ominsphero
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Figure 2. Oligodendrocyte differentiation of primary hNPC. Oligodendrocyte dif-
ferentiation was assessed by immunocytochemical staining for the oligodendro-
cyte marker 04 of 5 days differentiated hNPC. Nuclei were counterstained with
Hoechst. Scale bar = 50pm. The staining method was previously published in
Baumann et al. (2014, 2015).

(Schmuck et al., 2017). Hence, NPC2 can be utilized to assess ra-
dial glia and neuronal migration at the same time.

Migration analyses can also be performed with hiPSC-
derived NPC (hiNPC2; Hofrichter et al., 2017). Migration distance
is similar between NPC2 and hiNPC. Yet, the first cells migrating
from the hiNPC neurosphere are neurons and not radial glia as
from the hNPC sphere.

ASTROCYTE DIFFERENTIATION/MATURATION

Astroglia differentiation is a crucial event during brain develop-
ment because astrocytes obtain a variety of central functions in
brain (Kettenmann and Verkhratsky, 2011). Astrocyte differenti-
ation can be measured in developing mixed cell cultures by
counting the percentage of, eg, GFAP+ or vimentin+ cells from
the total number of differentiated hESC, primary hNPC or hUCB-
NSC (summarized in Fritsche et al,, 2015; Edoff et al., 2017).
Lately, also hiPSC differentiation into the astrocyte lineage was
employed in a toxicological context either in 2D (after 28 days)
or in 3D (after 56 days) by creating “brain balls” in shaking cul-
tures (Pamies et al., 2017, 2018b; Pistollato et al., 2014). Moreover,
morphogen-induced astrocyte maturation can be studied in the
context of the “Neurosphere assay” (Masjosthusmann et al.,
2018). Apart from toxicology, clearly more data on astrocyte dif-
ferentiation is available on the basic science level, which is
summarized, eg, in Chandrasekaran et al. (2016). Astrocyte
function as the most relevant readout was recently
compared between long-term self-renewing hiPSC-derived
neuroepithelial-like stem cells (ItNES; Falk et al., 2012)-astro-
cytes, human primary adult astrocytes (phaAstro), an astrocy-
toma cell line CCF-STTG1 (CCF), and hiPSC-derived astrocytes
from Cellular Dynamics International (iCellAstro). Here, 1tNES-
astrocytes were the only ones expressing functional, glutamate
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Figure 3. Synapse formation and neuronal network activity of a hiPSC-derived network. A, hiPSC (IMR-90, Wicell) were neurally induced to NPCs using the NIM-proto-
col (Hofrichter et al. 2017) and differentiated on p-lysin/laminin-coated glass slides for 28 days, fixed with paraformaldehyde and stained for B(III)-tubulin” neurons and
synapsinl® presynaptic structures, respectively. Nuclei were stained with Hoechst. Scale bar=100 um. B, Spikeraster plot of spontaneous electrical activity of a hiPSC-
derived neuronal network cultivated for 20 days on p-lysin/laminin-coated microelectrode arrays.

transporting SLC1A3 protein, which is an assay suitable for
higher throughput drug screening (Lundin et al., 2018).

OLIGODENDROCYTE DIFFERENTIATION/
MATURATION

Oligodendrogenesis is necessary for proper brain functioning as
oligodendrocytes form and keep myelin sheaths around axons
(Baumann and Pham-Dinh, 2001). Data on chemical effects on
hESC-, hNPC-, or hUCB-NSC-derived oligodendrocytes are sum-
marized in Fritsche et al. (2015). Different groups have recently
established further oligodendrocyte differentiation protocols
using hESC/hiPSC growing feeder-free (Douvaras et al.,, 2014;
Gorris et al., 2015; Madill et al., 2016; Yamashita et al., 2017) or in
presence of feeder cells (Douvaras et al., 2014; Ehrlich et al., 2017;
Gorris et al., 2015; Madill et al., 2016; Nicaise et al., 2017) in a 2D
format. Pamies et al. (2018b) used hiPSC-derived 3D “brain balls”
to study differentiation of oligodendrocytes in a toxicological
context. Oligodendrocytes emerge late during nervous system
development and differentiation of hESC/hiPSC into the oligo-
dendrocyte lineage following the above-mentioned protocols
needs several weeks making medium-to-high throughput
screening for oligodendrocyte toxicity using hESC/hiPSC a great
challenge. In contrast, oligodendrocyte formation and matura-
tion can be studied with hNPC growing as neurospheres with
the NPC5/6 assay within a neurosphere differentiation time of
5days (Figure 3; Bal-Price et al.,, 2018a; Dach et al., 2017). These
assays are based on manual or automated oligodendrocyte
quantification as a measure for oligodendrocyte formation
(NPCS5; Figure 3; Bal-Price et al., 2018a; Barenys et al., 2017), which
is the normalization basis for subsequent thyroid hormone
(TH)-dependent myelin basic protein (MBP) expression as a
measure for oligodendrocyte maturation (Bal-Price et al., 2018a;
Dach et al, 2017). Interference of a compound with the TH-
induced oligodendrocyte maturation is thus an assay for identi-
fying TH disruptors (NPC6). Oligodendrocyte precursor cells can
also be enriched by isolation from gestational week 10-13 fetal
human neurospheres (Lu et al., 2015).

NEUROGENESIS

Neurogenesis is one of the most frequently studied endpoints
for DNT evaluation. Compounds’ effects on neuronal differenti-
ation have been studied in hESC- (summarized in Ehashi et al,,
2014; Fritsche et al., 2015; Schulpen et al., 2015; Sohn et al., 2017;

Zeng et al., 2016), hiPSC-derived (Pistollato et al., 2017) mixed
neuronal-glial or hUCB-NSC (summarized in Fritsche et al., 2015;
Kashyap et al., 2015; Zychowicz et al., 2014) cultures in 2D, as
well as in hiPSC-derived mixed-culture “brain balls” in 3D
(Pamies et al., 2017) and hiPSC-generated (Hofrichter et al., 2017)
or primary neurospheres (summarized in Fritsche et al., 2015
and Bal-Price et al., 2018a; Masjosthusmann et al., 2018) differen-
tiating in “secondary 3D” structures. Within some of the above-
mentioned studies, differences in sensitivity and specificity
of DNT effects between neuronal cells toward methylmer-
cury were observed. These are probably due to the large dif-
ferences in stem «cell cultivation and differentiation
protocols concerning, eg, medium, feeder cell status, timing,
differentiation through hESC-derived NPC or direct neuronal
differentiation, amounts of glia present and level of quality
control, just to mention some. Especially quality control and
reporting standards are a large issue in current stem cell
work that urgently need standardization as recently voiced
by a workshop report on “Advanced good cell culture practice
for human primary, stem cell-derived and organoid models’
(Pamies et al., 2018a).

Concerning cell-type composition, mixed neuron-glia
cultures are advantageous for DNT testing as different cell
types might have different susceptibilities toward com-
pounds (Pei et al., 2016), eg, astroglia might alter develop-
mental toxicity to neurons (Wu et al., 2017). In addition, the
advantage of the monolayer differentiation protocols clearly
lie in the more simple evaluation, eg, by high content image
analyses (HCA), whereas the 3D differentiated methods are
more complex to evaluate via immunostainings. Somewhat
in-between are neurosphere-based methods that differenti-
ate in so-called “secondary 3D” structures, ie, maintaining
the multicellular organism aspect (Masjosthusmann et al.,
2018) despite plating of spheres on a 2D surface (Alépée et al.,
2014).

NEURONAL MATURATION

Dendritic and axonal (neurite) outgrowth followed by the for-
mation of synapses are key cellular features associated with the
functional maturation of the CNS. Neurite morphology can be
measured with a variety of methods including neurite number,
length, branching, or area using HCA, a fairly reliable and suit-
able image-based method for higher throughput applications
(Harrill et al., 2010, 2011a; He et al., 2012; Wilson et al., 2014). Cell
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Figure 4. hNPC growing as neurospheres in proliferation culture, were plated for migration analyses onto poly p-lysin/laminin-coated glass slides in presence and ab-
sence of MeHgCl. After (A) 24 and (B) 72 h, migration distance was measured from the outer sphere rim to the furthest migrated cells at four opposite positions. Cell titer
blue (CTB) and lactate dehydrogenase (LDH) assays were performed as described previously (Baumann et al. 2014). C, Neurospheres were plated as described in (A) in
presence and absence of epigallocathechin gallate (EGCG). After 24 h the migration area was analyzed visually by phase contrast microscopy and for better visualiza-
tion images were subjected to a black/white filter. D, Viability analyses using the CTB assay were performed on each day up to 5 DIV. E, On day 5, FACS analyses of dis-
sociated hNPC were performed after annexin V/PI staining. As a positive control, spheres were treated with the topoisomerase I inhibitor camptothecin. (A, B, D)
*p <.05; (E) § p <.05 of annexin + /PI-cells; # p <.05 of annexin + /PI+ cells; *p <.05 of live cells.

material for such analyses includes hESC-derived almost pure
neuronal cultures (hN2TM, ArunA Biomedical Inc., Athens,
Georgia; Behl et al., 2015; Harrill et al., 2011a; Wilson et al., 2014)
that were treated after neuronal specification had already taken
place; hESC-derived hNP cells (hNP1™ 00001, ArunA Biomedical
Inc.) treated when cells were making the transition from prolif-
erating NPC to postmitotic neurons (Wang et al., 2016); hESC-
derived hNPC (Chemicon-Millipore Norcross, Georgia; Zeng
et al.,, 2016); 3D aggregated hESC-derived embryoid bodies (He
et al., 2012); hiPSC-generated iCell neurons (Cellular Dynamics
International; Ryan et al., 2016); hiPSC-derived hNPC growing as
neurospheres (Hofrichter et al., 2017); primary NPC differentiat-
ing into mixed cultures (NPC4; Bal-Price et al., 2018a; Edoff et al.,
2017; Schmuck et al., 2017), ie, multiple parameters of the neuro-
sphere assay including neurite morphology can be assessed
with the algorithm Omnisphero (www.omnisphero.com; last
accessed July 2018; Schmuck et al., 2017); or LUHMES cells (Krug
et al., 2013; Scholz et al., 2011).

NEURONAL SUBTYPE DIFFERENTIATION

During brain development, neural stem and progenitor cells
produce a variety of neuronal subtypes, which differentiate at
different stages and in different regions of the brain.
Compounds’ effects on neuronal subtype differentiation has
mostly been assessed for dopaminergic (DA) neurons using
hESC (Huang et al., 2017; Stummann et al., 2009; Zeng et al.,
2006), for DA as well as cholinergic neurons using hUCB-NSC
(Kashyap et al., 2015) and for DA, glutamate- and GABAergic
neurons employing hiPSC (Pistollato et al., 2017).

SYNAPTOGENESIS/NEURONAL NETWORK
FORMATION

During early neurogenesis neurons start to mature, become
electrically active and connect via synapses (Okado et al., 1979;
Zecevic and Antic, 1998). For the function of the CNS this neuro-
nal maturation and the formation of synapses is crucial. So far,
DNT testing for synaptogenesis and neuronal activity in the de-
veloping brain has mainly been performed using rat primary
cells (Harrill et al., 2011b; Hogberg et al., 2011; Robinette et al.,
2011) and no in vitro DNT study has been published using hESC
or hiPSC for assessing compound effects on neuronal network
activity. However, there are a number of promising systems un-
der development that have been used for acute neurotoxicity
evaluations studying either synaptogenesis and/or neuronal
electrical activity including hESC (Kapucu et al., 2012; Oh et al.,
2016; Sandstrom et al., 2017; Yla-Outinen et al., 2010) or hiPSC
neuronal network differentiation methods (Figure 3; Hofrichter
et al., 2017; Pellett et al., 2015; Pistollato et al., 2017; Toivonen
et al.,, 2013). Here, the use of hiPSC-derived neuronal networks
growing directly on microelectrode arrays (MEAs) seems to be a
promising method for screening neurodevelopmental toxins for
their adverse effects on neuronal network formation.

What are the difficulties one faces with stem cell-based ac-
tive neuronal networks for DNT evaluation? Every single neuro-
nal network differentiates into a variable amount of neurons, ie,
variable neuron/glia ratio, as well as neuronal subtypes that
form neuronal connections by chance. Therefore, each network
exhibits its own baseline activity level with high MEA-to-MEA
variability making comparison of developmentally exposed
neuronal networks to control networks very difficult. In
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addition, network activity is generally not very high compared
with rodent networks. Developing rat networks differentiate
faster and show much higher activity levels and synchroniza-
tion than stem cell-based human networks. This makes analy-
ses of the adverse effects of toxicants on human networks
much more difficult. To overcome these restrictions and make
neuronal human stem cell-based networks more standardized
and reproducible, one can envision making use of the relatively
new method of 3D bioprinting (Zhuang et al., 2018). Using this
method, neural cells might directly be printed in a three-
dimensional hydrogel precisely on MEAs (Tedesco et al., 2018).

SUMMARY AND CONCLUSION

During the last 15years, much effort has been put into estab-
lishment, scientific validation, and test method set up for DNT
in vitro evaluation. In addition to primary rodent cultures, which
are valuable cell methods for comparing compounds’ effects
in vivo to in vitro, stem/progenitor cell-based methods have be-
come available that can now be assembled into a DNT in vitro
testing battery (summarized in Bal-Price et al., 2018a). Such a
testing battery is necessary for covering the immense complex-
ity of neurodevelopmental processes as well as timing aspects
of brain development. However, the current state of the science
concerning the testing battery is probably still at an early, im-
mature state. While a variety of important key events are very
well covered in the strategy, ie, neural proliferation, apoptosis,
NPC migration, neuronal differentiation and neurite morphol-
ogy, there are also some crucial aspects less well covered. These
include glia differentiation and maturation, glia cell function,
neuronal maturation, and neuronal network formation with as-
sessment of electrical network activity. Moreover, the complex-
ity of brain region-specific neural differentiation and function
has not been addressed in DNT assays yet. However, basic sci-
ence is moving down this path by creating brain region-specific
organoids (Lancaster et al., 2013; Qian et al., 2016) that might be
suited for studying region-specific effects of compounds on
neurodevelopmental key events. In addition, hormone-related
DNT has only been touched marginally with stem cell-based
human DNT in vitro assays by studying interference with cellu-
lar thyroid hormone (Dach et al., 2017) or glucocorticoid signal-
ing (Moors et al, 2012). Hormonal contributions to brain
development are much more manifold and complex and
chemicals with endocrine activities are thus suspected to inter-
fere with neurodevelopment (WHO-UNEP, 2012). Here, interfer-
ence with estrogen, androgen, retinoid, progesterone,
peroxysome proliferator-activated receptor, or endocannabi-
noid signaling pathways might have implications for the devel-
oping brain at specific developmental stages. Especially sex
hormone-related cellular and organ function is crucial for the
development of gender-specific behavior, which follows
species-specific traits (Wallen and Baum, 2002) . Molecular
aspects of the development of such human sex-specific behav-
ior is an understudied field of research posing a challenge for
in vitro DNT evaluation. Yet, primary human cells show some
sex-specific neurodevelopmental key event response differen-
ces toward methylmercury (Edoff et al., 2017) without under-
standing the mechanistic implications behind these
observations yet. Attempts are made to tackle this issue with ro-
dent in vitro methods (Keil et al., 2017). In this line, the largest
challenge will be the understanding of disturbance of emotional
and intellectual consciousness by chemical exposure in humans.
Understanding physiology behind these human traits is a

prerequisite that might enable establishment of adverse outcome
pathways for these fundamental human aspects in the future.
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