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The skin reacts to environmental noxae by inducing cytochrome P450 (CYP)-catalyzed reactions via activation of
the aryl hydrocarbon receptor (AhR). A drawback of this response is the generation of oxidative stress, which is
especially dangerous for postreplicative cells such as dermal fibroblasts, in which damage may accumulate over
time. Accordingly, in dermal fibroblasts, CYP1 expression is repressed and it has been proposed that this is due
to the AhR repressor (AhRR), which is supposedly overexpressed in fibroblasts as compared with other skin
cells. Here, we revisited this ‘‘AhRR hypothesis’’, which has been mainly based on ectopic overexpression
studies and correlation analyses of high AhRR gene expression with CYP1A1 repression in certain cell types. In
primary human skin fibroblasts (NHDFs) of 25 individuals, we found that (i) the AhRR was expressed only at
moderate RNA copy numbers and that, against the common view, (ii) in some fibroblast strains, CYP1A1 mRNA
expression could be induced by AhR activators. However, even the highest induction did not translate into
measurable CYP1 enzyme activity, and neither basal expression nor mRNA inducibility correlated with AhRR
expression. In addition, enhancement of CYP1A1 mRNA expression by trichostatin A, which inhibits AhRR-
recruited histone deacetylases at the CYP1A1 promoter, failed to induce measurable CYP1 activity. Finally, AhRR-
deficient (�/�) mouse embryonic fibroblasts were not induced to biologically relevant CYP1 enzyme activity
despite impressive mRNA induction. These data clearly indicate that repressed CYP1 activity in NHDFs is not
causally related to AhRR expression, which may serve a different, yet unknown, biological function.
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INTRODUCTION
The aryl hydrocarbon receptor (AhR) repressor (AhRR)—like
the AhR itself—belongs to the group of basic helix-loop-
helix–homologs of Period/ARNT (AhR nuclear translocator)/
Single-minded proteins and is an integral part of the AhR

signaling machinery (Mimura et al., 1999). The AhR is a
ligand-dependent transcription factor, which, in its unligated
state, rests as a multiprotein complex in the cytoplasm of
most cells of the body, including skin (Bickers et al., 1984;
Fujii-Kuriyama et al., 1992). Upon ligand binding, the receptor
sheds its cofactors, translocates into the nucleus where it
dimerizes with its partner ARNT, binds to xenobiotic response
elements in the promoter region of AhR-dependent genes,
and initiates transcription (Fujisawa-Sehara et al., 1987; Row-
lands and Gustafsson, 1997; Abel and Haarmann-Stemmann,
2010). Besides genes that are involved in xenobiotic
metabolism, one gene of the AhR gene battery is the AhRR
(Mimura et al., 1999). Overexpression studies suggested
that the AhRR also forms heterodimers with ARNT binding
to xenobiotic response elements and blocking AhR target
gene transcription (Mimura et al., 1999; Oshima et al.,
2007). This transcriptional hindrance is due to the lack of a
transactivation domain in the AhRR protein that is
present in the AhR (Sogawa et al., 1995; Mimura et al.,
1999). Thereby, the AhRR is thought to form a negative
feedback loop on the AhR gene battery, including its own
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transcription. Such AhR signaling was found in almost all
cells of the body, including skin (Das et al., 1986; Ahmad
et al., 1996).

The skin is the largest organ of the human body and
represents the body’s protective surface as the first and
outermost contact site for environmental noxae (Ahmad
and Mukhtar, 2004; Swanson, 2004; Merk et al., 2006;
Oesch et al., 2007). In this regard, it is important to note that
lipophilic chemicals, such as polycyclic aromatic hydro-
carbons and polyhalogenated hydrocarbons, or physical
stressors, such as UV radiation, may overcome the physical
barrier of the skin. Chronic exposure to the classical AhR
ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin, for example, leads
to chloracne, a chronic inflammatory disease of the skin,
which results in the formation of hyperplasia of some skin
epithelial structures, and therefore indicates a physiological
relevance of the AhR in pathologies of the skin (Panteleyev
and Bickers, 2006). It is therefore not surprising that similar to
liver—as the first-pass organ for oral exposure—skin as the
first-pass organ for dermal exposure possesses capacities for
xenobiotic metabolism (extensively reviewed in Oesch et al.,
2007; Gotz et al., 2012a, b). Accordingly, the ability of skin to
metabolize polycyclic aromatic hydrocarbons has long been
described in vivo in animals and humans. Skin cells express
the AhR, and AhR activation by polycyclic aromatic hydroca-
rbons causes induction of cytochrome P450 (CYP)1A1 and
1B1, which hydroxylate such xenobiotics (Levin et al., 1972;
Alvares et al., 1973; Bickers et al., 1984). In contrast to
inducible CYP enzymes, phase 2 drug metabolism enzymes
such as glutathion S-transferase, N-acetyltransferase, or UDP-
glucuronosyltransferase are constitutively present in skin and
thus guarantee detoxification of hydroxylated metabolites
(Oesch et al., 2007; Gotz et al., 2012b). The fact that the
same drug metabolism is also essential for skin after UV
exposure is a relatively new realization. We and others
showed in vitro and in vivo that upon UV irradiation, natural
AhR ligands are formed intracellularly from free tryptophan
(Rannug et al., 1987; Wei et al., 1999; Bergander et al., 2004;
Fritsche et al., 2007; Wincent et al., 2009). Among those, 6-
formylindolo-3,2b-carbazole is the most potent AhR ligand
(Rannug et al., 1987, 1995). 6-Formylindolo-3,2b-carbazole
is metabolized by CYP enzymes and thus induces their
expression (Wei et al., 1998, 2000; Bergander et al., 2003,
2004; Wincent et al., 2009). Hence, AhR signaling is
indispensable for skin xenobiotic metabolism of polycyclic
aromatic hydrocarbons and UV photoproducts.

The drawback of such CYP monooxygenase–catalyzed
metabolic reactions is the generation of oxidative stress
(Puntarulo and Cederbaum, 1998; Morel et al., 1999). A
tissue with a high cellular turnover rate is, up to a certain
limit, sparsely harmed by oxidative stress because structural
cellular damages such as mitochondrial DNA mutations or
other macromolecular modifications do not accumulate over
time. Such a tissue, in which cells constantly proliferate, is
the epidermis mainly consisting of keratinocytes. A completely
different situation is given in the dermis. Dermal fibroblasts
are postreplicative and rest in the dermis for decades,
producing extracellular matrix. For them, accumulation of

damage is pathogenic and causes tissue degeneration. Therefore,
there is a need for fibroblasts to keep their oxidative stress
level low. As one source of reactive oxygen species produc-
tion is xenobiotic metabolism (reviewed in Gonzales, 2005),
repression of metabolism is a necessary consequence for the
fibroblast, especially with regard to the fact that the epidermis
as the outer barrier is metabolically competent (Pendlington
et al., 1994; Afaq and Mukhtar, 2001; Swanson, 2004; Du
et al., 2006). Consequently, in human skin fibroblasts, CYP1
expression was found to be repressed (Gradin et al., 1993;
Haarmann-Stemmann et al., 2007). In addition, it has been
proposed that this repression is mediated by the AhRR
(Gradin et al., 1993; Mimura et al., 1999; Oshima et al.,
2007). This assumption was based on the observation that the
AhRR was overexpressed in fibroblasts as compared with
other skin cells (Akintobi et al., 2007). In these studies,
however, AhRR expression was not analyzed (i) in adult
primary human fibroblasts, and (ii) the data were in large part
obtained from overexpression experiments and at least in part
from mRNA analysis as fold induction rather than actual copy
numbers. In the present study, we therefore revisited this
‘‘AhRR hypothesis’’.

RESULTS
Expression of AhR signaling components in human skin cells and
MEFs

Here we used primary human skin fibroblasts from 25 indi-
vidual breast reduction donors belonging to five different age
groups (Figure 1). Real-time reverse-transcriptase (RT)–PCR
analyses revealed for one that mRNA steady-state levels of
components of the AhR signaling pathway (AhRR, AhR, and
ARNT) were each expressed in similar copy numbers among
the 25 individuals. The five different age groups also did not
differ markedly from each other. Thereby, the expression
levels of AhRR, AhR, and ARNT did not exceed 1, 6.7, and
17.9 copies/104 transcripts b-actin, respectively, in those
cells (Figure 1a–c). Comparison of these expression patterns
with the distribution of AhR signaling components in primary
human keratinocytes (normal human epidermal keratinocytes
(NHEKs)), as well as the keratinocyte cell line NCTC 2544
and AhRRþ /þ and AhRR�/� mouse embryonic fibroblasts
(MEF), revealed that normal human dermal fibroblasts
(NHDFs) express significantly more AhRR than all the other
tested cells (Figure 1d; vs. NHEK: P¼ 0.00000005; vs. NCTC:
P¼000003; vs. AhRRþ /þ MEF: P¼ 0.03; vs. AhRR�/� MEF:
P¼00000003). A different result was obtained for the
expression of AhR (Figure 1e); whereas NHEKs (P¼0.008)
and AhRR�/� MEFs (P¼0.02) express significantly more AhR
transcripts (up to 1.5/104 b-actin) compared with NHDFs (6–7
copies/104 b-actin), NCTCs express significantly less AhR
(B2.5 copies/104 b-actin; P¼0.0004). ARNT expression on
the other hand (Figure 1f) is significantly less in keratinocytes
(B5/104 b-actin) compared with NHDFs (vs. NCTCs: P¼0.03),
whereas AhRR�/� and AhRRþ /þ MEFs express one order
of magnitude more ARNT (B2000 transcripts/104 b-actin;
AhRR�/� MEF: P¼0.009; AhRRþ /þ MEF: P¼0.003). As
shown, as examples for the age groups 20–29 and 460 years,
the interindividual differences inside the different age groups

88 Journal of Investigative Dermatology (2013), Volume 133

J Tigges et al.
AhRR Function Revisited



were bigger than the differences between the different ages,
but did not reach statistical significance (Supplementary
Figure S1 online, Figure 1a and b).

Inducibility of AHR signaling by AHR agonists in human skin
cells and MEFs

To verify that AhR signaling in fibroblasts is not functional
(reviewed in Haarmann-Stemmann and Abel, 2006; Evans
et al., 2008), we challenged the 25 different NHDF strains
with 250 nM of the AhR agonist benzo(a)pyrene (B(a)P; Figure
2a–f). Indeed, B(a)P did not increase CYP1A1 copy numbers
significantly. However, plotting the obtained data as x-fold
of solvent control (Supplementary Figure S2 online)
disclosed a significant increase in CYP1A1 induction for
the age groups 40–49, 50–59, and 460 years. In the age
group of 50–59 years, preincubation of cells with the
competitive AhR antagonist 30methoxy-40-nitroflavone
(10 mM) inhibited this CYP1A1 induction significantly.
However, Figure 2b–f, which show the detailed analysis
of Figure 2a (each graph representing one age group),
clearly demonstrates that the inducibility of CYP1A1 after
treatment with B(a)P displayed large interindividual differ-
ences. We next asked whether these differences in
inducibility of CYP1A1 in NHDF cells correlated with the
respective AhRR content of the cells. Linear regression
analyses revealed a coefficient of determination (r2) of 0.014
(Figure 2j, basal) and 0.006 (Figure 2k, induced), indicating
no correlation between basal or inducible CYP1A1 and AhRR
expression in NHDFs.

As the AhRR theory has partly been studied in MEFs
(Oshima et al., 2007), we next studied CYP1A1 mRNA
expression in MEFs obtained from AhRR-knockout (AhRR�/�),
as well as AhRR-proficient (AhRRþ /þ ), mice. In AhRR�/�

MEFs, CYP1A1 mRNA expression was 11-fold induced by
250 nM B(a)P and even 117-fold in the mean by 1 mM of the
synthetic AhR-agonist 3-methylcholanthrene (3-MC) after
48 hours (Figure 2g). However, the SD was very high and
therefore significance was not reached. In AhRRþ /þ MEFs,
CYP1A1 expression was induced 154-fold after treatment
with 1 mM 3-MC. In contrast, in NHEKs and NCTCs,
CYP1A1 mRNA expression was significantly induced by
250 nM B(a)P B3-fold (from B100 to B300 copies/104 b-
actin in NHEKs and from 0.5 to 1.5 copies/104 b-actin in
NCTCs). In case of NCTCs, induction of the CYP1A1 gene
expression by B(a)P was significantly inhibited by pre-
incubation of the cells with 10 mM of the AhR agonist,
30-methoxy-40-nitroflavone.

CYP1A1 enzyme activity in NHDFs compared with AhRRþ /þ

and AhRR�/� MEFs

Functional relevance of CYP1A1 induction reflects in CYP1
enzyme activity. Therefore, we measured ethoxyresorufin
O-deethylation (EROD) activity in NHDFs, AhRRþ /þ , and
AhRR�/� MEFs (Figure 3), which, to the best of our knowl-
edge, has only been done for human skin fibroblasts earlier
in one study, wherein Quan et al. (1995) observed no
measurable CYP1 activity upon B(a)P-trans-7,8-dihydrodiol
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treatment, but did not associate this finding with a repressor
of AhR signaling at the time.

For NHDFs, three individuals from the lowest (1) and
highest (2) age group, respectively, which displayed the

largest CYP1A1 mRNA induction upon AhR activation or
overall CYP1A1 copy numbers (Figure 2), were chosen for the
functional analyses (Figure 3). NCTC 2544 cells, a keratino-
cyte cell line with known CYP1 induction upon AhR
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activation (Gotz et al., 2012a), were used as a positive
control. B(a)P and 3-MC (0.01, 0.1, 0.25, 1, and 10mM) did
not induce EROD activity above the limit of quantification
(LOQ; indicated by dotted line) in any samples of the NHDFs
under any condition tested, whereas NCTC 2544 cells
presented a significantly inducible EROD substrate turnover
(from basal 1 to induced 100–200 pmol min�1 mg�1;
Figure 3a–c). EROD activity was also not detectable in
AhRRþ /þ MEFs upon any treatment (Figure 3d), and 1 mM

B(a)P or 3-MC resulted in a marginal EROD activity at the

level of the LOQ at 0.8 pmol min�1 mg�1 in AhRR�/� MEFs
(Figure 3e). Compared with keratinocytes, this turnover rate is
negligible.

Effect of HDAC inhibition on the expression of CYP1A1 and
AhRR mRNA and EROD activity in NHDFs

Previous work from our own laboratory (Haarmann-Stem-
mann et al., 2007) and that of others (Gradin et al., 1999;
Oshima et al., 2007) showed that histone deacetylase
(HDAC) inhibition leads to a superinduction of CYP1A1

Figure 2. Inducibility of aryl hydrocarbon receptor (AhR) signaling by AhR agonists in human skin cells and mouse embryonic fibroblasts (MEFs). Real-time

reverse-transcriptase PCR (RT–PCR) detection of cytochrome (CYP)1A1 in normal human dermal fibroblasts (NHDFs) of donors of different ages (a–f), AhRRþ /þ

and AhRR�/� MEFs (g), as well as normal human epidermal keratinocytes (NHEKs) (h) and NCTCs (i). Expression of CYP1A1 is normalized to 104 transcripts

b-actin; *Po0.05 versus solvent control (DMSO); #Po0.05 versus 250 nM benzo(a)pyrene (B(a)P). (a) Summary of inducibility of CYP1A1 in NHDF cells from

individuals of five different age groups (20–29, 30–39, 40–49, 50–59, and 460 years), each bar graph representing five different individuals. Real-time RT–PCR

detection of CYP1A1 was performed after pretreatment with 10 mM 30-methoxy-40-nitroflavone (MNF) for 1 hour, followed by 48 hours of incubation with B(a)P

(250 nM). (b–f) Graphs show detailed analysis of a, each graph representing one age group (b: 20–29 years, c: 30–39 years, d: 40–49 years, e: 50–59 years, and f:

460 years). (g) Inducibility of CYP1A1 in AhRRþ /þ and AhRR�/� MEFs. (h, i) Inducibility of CYP1A1 in NHEKs (h) and NCTC 2544 (i). Real-time RT–PCR

analysis of CYP1A1 was performed after pretreatment with 10mM MNF for 1 hour followed by 48 hours of incubation with B(a)P (250 nM), n¼ 3. (j, k) Correlation

of AhRR and CYP1A1 (j: basal, k: induced by 250 nM B(a)P) expression in NHDFs. Basal AhRR expression is plotted on the x axis, and basal or induced CYP1A1

expression is plotted on the y axis. Linear regression line and coefficient of determination (r2) values are shown, n¼ 25. As the experiments were performed in

duplicates, the error bars represent the minimum/maximum of each data point.
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Figure 3. Induction of ethoxyresorufin O-deethylation (EROD) activity in normal human dermal fibroblast (NHDF) cells and mouse embryonic fibroblasts

(MEFs) by different concentrations of the aryl hydrocarbon receptor (AhR) agonists 3-methylcholanthrene (3-MC) and benzo(a)pyrene (B(a)P; 0.01–10 lM).

The asterisks indicate significant differences (Po0.05) to solvent (DMSO) control. NCTCs were used as a positive control; y indicates significant differences

(Po0.05) to solvent (DMSO) control of NCTCs. The dotted line indicates the limit of quantification (LOQ) for each cell strain. Each graph represents three

independent experiments. (a–c) Induction of EROD activity in NHDFs in 21- (a), 60- (b), and 64- (c)-year-old female donors induced by different concentrations

of 3-MC and B(a)P. Activity is shown in pmol min�1 mg�1. (d, e) Induction of EROD activity in wild-type MEFs (AhRRþ /þ ) (d) and AhRR-deficient MEFs (AhRR�/

�) (e) induced by different concentrations of 3-MC and B(a)P. Activity is shown in pmol min�1 mg�1.
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mRNA expression in fibroblasts. HDACs are recruited by the
AhRR and are necessary for its transcription inhibitory activity
(Gradin et al., 1999). We therefore next treated the same
three NHDF cell strains already used for the induction
experiments in Figure 3 with the HDAC inhibitor trichostatin
A (TSA; 0.5 mM). None of these treatments decreased cell
viability (Figure 4d). As expected, TSA increased CYP1A1
mRNA expression, whereas in the same samples AhRR mRNA
expression was diminished (Figure 4a and b). However,
EROD enzyme activity analyses in these cells demon-
strated that ‘‘superinduction’’ of CYP1A1 by HDAC
inhibition did not lead to an increase in measurable EROD
activity above the LOQ (Figure 4c).

DISCUSSION
For a decade now, it is thought that the AhRR represses AhR-
dependent xenobiotic metabolism in HeLa cells or fibroblasts
(reviewed in Haarmann-Stemmann and Abel, 2006; Evans
et al., 2008). This assumption is founded on overexpression
studies, electrophoretic mobility shift assay, and chromatin

immunoprecipitation analyses as well as, in part, on mRNA
expression analyses as fold of control (Gradin et al., 1993;
Mimura et al., 1999; Haarmann-Stemmann et al., 2007) done
in fibroblasts and MEF cells (Oshima et al., 2007). Therefore,
we revisited this common knowledge ‘‘AhRR hypothesis’’ by
expanding the database for (i) primary human skin fibroblasts
from 25 different donors, (ii) physiological stoichiometry of
AhR signaling compounds and involvement of HDACs in
these not genetically manipulated cells, and (iii) a functional
readout, CYP1 activity. To confirm our data, we also included
AhRRþ /þ and AhRR�/� MEFs, and used epidermal keratino-
cytes that are known to possess approximately 10% of liver
CYP1 activity (Smith and Hotchkiss, 2001) as positive
controls. This thorough revisiting of the ‘‘AhRR hypothesis’’
revealed that—at least in adult primary human fibroblasts—
the AhRR does not control AhR-dependent CYP activity.

Previous studies showed that two cell types, fibroblasts
and keratinocytes, within the same organ, i.e., skin, might
contain high and low levels of AhRR expression, respectively
(Akintobi et al., 2007). In the present study, we analyzed
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Figure 4. Effect of histone deacetylase (HDAC) inhibition on the expression of cytochrome (CYP)1A1 and aryl hydrocarbon receptor repressor (AhRR) mRNA,

as well as ethoxyresorufin O-deethylation (EROD) activity in normal human dermal fibroblasts (NHDFs). Each graph represents three independent experiments

performed in three different NHDF strains (F21D16WB, F60D44WB, F64D41WB). (a, b) CYP1A1 and AhRR transcripts were quantified using real-time

reverse-transcriptase PCR (RT–PCR) and normalized to 104 transcripts b-actin. Cells were treated for 16 hours with benzo(a)pyrene (B(a)P; 0.25, 1, and 10 mM)

or cotreated with trichostatin A (TSA; 0.5mM), respectively. (c) EROD in NHDF cells by B(a)P (1 and 10 mM) or cotreated with TSA (0.5 mM). NCTCs were used

as a positive control: yPo0.05 compared with solvent control of NCTCs. The dotted line indicates the limit of quantification (LOQ); activity is shown in

pmol min�1 mg�1. (d) Change in cell viability in NHDF cells by different concentrations of B(a)P (1 and 10 mM) alone or cotreatment with TSA (0.5 mM). As a

control lysis of the cells was achieved by adding 9% Triton X (1:50). The dotted line marks the approximately 100% cell viability of untreated (medium) cells.
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the AhRR, AhR, and ARNT amount expressed in human
fibroblasts and keratinocytes by real-time RT–PCR (Figure 1).
In accordance with those previous findings, we identified
gene expression levels for AhRR one order of magnitude
higher in NHDFs compared with NHEKs, and for AhR, a two-
fold higher expression in keratinocytes compared with
fibroblasts. Our findings are in contrast to previous work of
Akintobi et al. (2007) who found a six-fold higher expression
of AhRR versus AhR in human fibroblasts than in human
keratinocytes. These differences might be due to interindivi-
dual or gender variation (Supplementary Figure S1 online).

Gene induction experiments with B(a)P from this study are
in agreement with the work from Hosoya et al. (2008).
Although the CYP1A1 was induced up to 8-fold by B(a)P in
NHDFs from this study (Supplementary Figure S2 online), it
was 25-fold induced by B(a)P in murine skin fibroblasts.
Differences in magnitude of induction are possibly due to
different B(a)P concentrations (250 nM vs. 1mM), incubation
times (48 vs. 24 hours), species, or cellular age, as our donors
were 20- to 60-year-old females, and the Hosoya study used
skin fibroblasts from neonatal mice. In contrast, Gradin et al.
(1993) did not observe CYP1A1 induction by 2,3,7,8-
tetrachlorodibenzofuran in fibroblasts derived from neonatal
foreskin of human donors, which may be due to the method of
detection, because real-time RT–PCR is more sensitive than
northern blot analysis, the age of the donors, or even the skin
location where fibroblasts were gained from. Fibroblasts of the
same donor, prepared from skin from different parts of the
body, display differences in their expression profile (Chang
et al., 2002). We also have to point out that CYP1A1
expression in all tested NHDF samples had CT values well
behind the last measured CYP1A1 standard (3.75� 102 copies
of CYP1A1ml�1) and therefore must be considered as close to
the limit of detection and handled with care. The role of the
AhRR in magnitude of CYP1A1 induction in fibroblasts was
tackled by the use of AhRR-proficient and -deficient mouse
fibroblasts. The study by Hosoya et al. (2008), as well as this
study (Figure 2g), observed high CYP1A1 induction after
treatment with an AhR agonist in AhRR�/� cells (150-fold
(Hosoya et al. (2008)) and 117-fold (this study), respectively).

To critically challenge the role of the AhRR in control of
CYP1A1 expression in fibroblasts, we took a step back from
‘‘fold of gene induction’’ to the raw data, i.e., AhRR copy
numbers, which were derived from a product-specific copy
number standard. These analyses revealed that copy numbers
of this gene were low, with 1 and 0.5 copies/104 transcripts
b-actin in fibroblasts and MEFs, respectively. As the actual
gene copy numbers corrected for the housekeeping gene
b-actin for the AhRR have not been reported previously, we
cannot compare our data with any other study. However,
within our data, we found that fibroblasts and MEFs
expressed the AhRR in the same low order of magnitude
(with MEFs B50% lower than NHDF; Figure 1d). Keratino-
cytes expressed the AhRR at much lower levels (Figure 1e).
Despite this low expression level in fibroblasts, we wanted to
know whether there is any functional relevance of the AhRR
on AhR signaling. Therefore, we used two strategies: first, we
correlated gene copy numbers of basal and induced CYP1A1

expression with AhRR expression, and second, we measured
CYP1 enzyme activity with the EROD assay in primary
fibroblasts as well as in AhRRþ /þ and AhRR�/� MEFs.
Expression levels of the AhRR did not correlate with neither
basal nor induced CYP1A1 gene expression levels (Figure 2j
and k). However, CYP1A1 did not correlate with AhR or
ARNT expression either (data not shown). AhRR expression
and inducibility of CYP1A1 also showed no association in
nine different tumor cell lines in an earlier study (Tsuchiya
et al., 2003). Therefore, these data suggest that in the
physiological stoichiometry of the cell, the AhRR does not
(necessarily) determine AhR signaling. The fact that this
suggestion is true for adult human fibroblasts is strongly
supported by our functional data. Measurements of enzyme
activity in human fibroblasts (chosen were the individuals
with highest CYP gene expression/induction) and in
AhRRþ /þ and AhRR�/� MEFs clearly showed that in the
copy number range of CYP1A1 gene expression (up to 10
copies hCYP1A1/104 transcripts b-actin), there was no EROD
activity measurable above the LOQ (Figure 3a–c). In the case
of NCTCs, even lower CYP1A1 transcript numbers (only up to
1.5/104 b-actin; Figure 2i) resulted in an impressive CYP1
induction of up to B200 pmol min�1 mg�1 (Figure 3). These
data strongly suggest that there is no correlation between
CYP1A1 mRNA expression and enzyme activity. In fact,
it has been described by Gry et al. (2009), who compared
RNA and protein profiles of 1,066 gene products in 23
human cell lines, that only one-third of the tested genes
show a significant correlation between mRNA and protein
expression. This phenomenon has also been described
for CYP enzymes earlier (Swanson, 2004; Svensson, 2009).
Wild-type MEFs also displayed no EROD activity, whereas
AhRR�/� MEFs just reached the LOQ (at 1 pmol min�1

mg�1 ethoxyresorufin) with inducer concentrations up to
1 mM (Figure 3d and e). As this enzyme activity was very
low, especially in comparison with keratinocytes
(100–200 pmol min�1 mg�1 ethoxyresorufin; Figure 3, Gotz
et al., 2012a), we doubt the physiological relevance of
CYP1A1 activity in fibroblasts.

Previous work identified the association of AhRR function
with HDAC activity (Gradin et al., 1999; Haarmann-
Stemmann et al., 2007; Oshima et al., 2007). As this was
supposed to be the molecular mechanism of CYP1A1 expres-
sion control, we treated our three best inducible individuals
with the HDAC inhibitor TSA in the presence or absence of
B(a)P (Figure 4). Our study reproduced the previous results
that CYP1A1 transcripts are strongly induced upon TSA
exposure, which in our cells correlated with a downregula-
tion of AhRR expression. However, on measuring EROD
activities in those cells, it was found that the substrate turnover
never reached the LOQ, clearly showing that CYP1A1 mRNA
expression was overall too low to be translated into phy-
siologically relevant CYP1 activity in these cells.

Taken together, by revisiting the ‘‘AhRR hypothesis’’ in
primary human fibroblasts from 25 human individuals, we
found that (i) the AhRR is expressed only at moderate RNA
copy number levels and that, against the common view, (ii) in
some of the investigated fibroblast strains, CYP1A1 mRNA
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expression can be induced by AhR activators. However, even
the highest induction did not translate into measurable CYP1
enzyme activity, and neither basal nor induced CYP1A1
mRNA expression correlated with AhRR expression. AhRR�/�

MEFs were not induced to biologically relevant CYP1
enzyme activity despite impressive mRNA induction. Finally,
inhibition of HDAC activity by TSA failed to induce
measurable CYP1 activity. Thus, although we agree that
CYP activity in primary human fibroblasts is repressed, our
data give strong indications that (i) not the AhRR but a so far
unidentified factor mediates the repression of CYP activity in
these cells and that (ii) the AhRR may, at least for primary
human adult fibroblasts, serve a different, yet unknown,
biological function. One possible task of the AhRR in
fibroblasts might be the involvement in proliferation required
for wound healing. Wounds in AhR�/� animals had elevated
numbers of fibroblasts, which secreted higher levels of active
transforming growth factor-b that increased keratinocyte
migration in culture and led to faster wound healing in the
AhR�/� mice (Carvajal-Gonzalez et al., 2009). We observed
a different proliferative behavior of AhRR�/� MEFs compared
with the wild types in vitro (unpublished observations).
Whether the AhRR is truly involved in the determination of
fibroblast proliferation is further investigated.

Practically, this is of relevance not only for environmen-
tally induced skin diseases but also for therapeutical
interventions, as AhR-modifying compounds are used for
photoprotection of human skin (property right EP99 12 3929.4
(1999-12-02); Symrise AG (Holzminden, Germany); property
right DE59913409.7 1998-12-11) as well as in therapeutics.
Coal tar, e.g., which contains a variety of AhR agonists, has
been used for psoriasis treatment (Goeckerman, 1931), or the
antifungal ketoconazole has recently been identified as an
AhR agonist (Tsuji et al., 2012). To understand the effects and
side effects of such compounds on different skin cell types on
a molecular basis, knowledge of regulation of AhR signaling
in either cell type is essential. This work contributes to the
comprehension of AhR signaling in primary human fibro-
blasts.

MATERIALS AND METHODS
Chemicals and materials

All chemicals, if not otherwise specified, were purchased from

Sigma-Aldrich (St Louis, MO) and were of the highest purity

available. Cell culture media were obtained from PAA (Pasching,

Austria) and PromoCell (Heidelberg, Germany). The CBQCA protein

quantification kit was purchased from Life Technologies (Paisley,

UK). The Cell Titer-Blue cell viability assay kit was purchased from

Promega (Madison, WI). Multi-well plates and cell culture devices

were obtained from Greiner Bio One (Frichenhausen, Germany) and

Carl Roth GmbH (Karlsruhe, Germany).

Preparation of primary fibroblasts

Normal human dermal fibroblasts. Dermal fibroblasts from 25

healthy volunteers were prepared from skin samples from breast

reduction surgery obtained from the hospital Kaiserswerther

Diakonie in Düsseldorf, Germany. The samples were taken from

female patients of five different age groups (20–29, 30–39, 40–49,

50–59, and 460 years; five each) and unknown pharmacological

background. Patients were informed beforehand and gave written

consent to donate removed tissue for scientific purpose. The prepara-

tion of primary human fibroblasts has been fully approved by the

Ethics Committee, Heinrich-Heine-University of Düsseldorf (Project-

Nr.: TOX_EF_D01/2008). This study was conducted in compliance

with the Declaration of Helsinki Principles. Skin samples were

collected immediately after surgery, kept cold during the transport

(o1 hour), and processed immediately. Briefly, subcutaneous fat

was removed before skin samples were cut into B0.5 cm2 pieces.

Skin pieces were washed in 70% ethanol, followed by sterile

phosphate-buffered saline. Skin pieces were incubated with dispase

(10 mg ml�1 in phosphate-buffered saline, sterile filtered) at 37 1C

and 5% CO2 for 2 hours; thereafter, epidermal sheets were removed

and dermal pieces were plated on cell culture dishes to dry for

30 minutes, and then the medium was added. Fibroblasts started to

migrate out of the dermal pieces after approximately 1–2 weeks.

Cells were used for experiments in passages 2–7. Cell labeling: F,

fibroblast; number, age; Dþ number, internal identification number;

W, female (German, weiblich); B, breast.

MEFs. Mouse embryonic fibroblasts (MEF) were generated from

embryos of wild-type and AhRR-deficient mice (HW and IF,

unpublished) at embryonic day 14. Cells were maintained in DMEM

containing 10% fetal calf serum, 1% glutamine, 0.1% 2-mercap-

toethanol, and 1% penicillin streptomycin and were used at passage

3 for all experiments.

Cell culture

NHDFs were cultured in DMEM high glucose with stable glutamine

containing 10% (v/v) fetal calf serum and 1% (v/v) antibiotic–anti-

mycotic solution (PAA, Pasching, Austria; catalog number P11-002).

MEFs were cultured as mentioned above. NCTC 2544 cells were

cultured in minimum essential medium containing 10% (v/v) fetal

calf serum and 1% (v/v) antibiotic–antimycotic solution. Primary

NHEK-c (PromoCell GmbH, Heidelberg, Germany) from a 29-year-

old female donor (breast) were cultured in full KGM2 Media

(PromoCell) supplemented with supplement mix and 50 mg ml�1

gentamycin (PAA) and 2.5 mg ml�1 amphotericin (PAA). All cells

were maintained under standard conditions at 37 1C and 5% CO2.

Treatment of cells was performed 24 hours after seeding in six-well

plates (RNA analysis) or 48-well plates (EROD/Cell Titer-Blue) in the

respective media. For subsequent EROD assay, the respective media

were used without fetal calf serum.

RNA isolation, RT–PCR, and real-time RT–PCR

Total RNA was isolated from cells using the PeqLab Total RNA Kit

(PeqLab, Erlangen, Germany) according to the manufacturer’s

instructions. RNA concentration was assessed by spectrophotometry

at 260 nm. Reverse transcription was performed as follows: 500 ng of

total RNA, 1 mg of p(DT)15 primer (Roche, Basel, Switzerland), and

5 mM solutions of each deoxyribonucleotide triphosphate were

dissolved in 10 ml of H2O and heated for 5 minutes at 65 1C.

The samples were chilled, and 4ml of 4� reverse transcription

buffer (250 mM Tris HCl, 375 mM KCl, 15 mM MgCl2) and 200 U of

M-MLV reverse transcriptase (Promega, Fitchburg, WI) were added

to a final volume of 20 ml. The samples were reverse transcribed

at 37 1C for 50 minutes, and the reaction was inactivated at 70 1C

94 Journal of Investigative Dermatology (2013), Volume 133

J Tigges et al.
AhRR Function Revisited



for 15 minutes. Real-time RT–PCR was performed using the Rotor

Gene Q device (Qiagen, Hilden, Germany). The PCR mix con-

sisted of 1/10 volume of Quanti Tect SYBR Green FAST PCR

Master Mix (Qiagen), 0.5 mM solutions of each primer, and 2.5 ml of

complementary DNA (after RT–PCR diluted 1:2.5 with H2O), in a

final volume of 15 ml. The application started with an initial

incubation step of 7 minutes at 95 1C to activate the DNA

polymerase. The conditions for PCR amplifications were as follows:

47 cycles of 10 seconds at 95 1C for denaturation, and 35 seconds at

60 1C for primer annealing, elongation, and fluorescence detection.

PCR-primer sequences for human and murine CYP1A1, AhRR, AhR,

ARNT, and b-actin are given in the Supplementary Table S1 online.

The quantification of PCR products was estimated from fragment-

specific standard curves and was calculated with the Rotor Gene Q

1.7 (Qiagen) software. Standard curves were prepared using

1.5� 102 to 1.5� 107 complementary DNA copies per ml and

amplified as described above.

EROD activity
For measuring CYP1A1 activities in living monolayer cultures,

ethoxyresorufin (dissolved in DMSO) was used according to a

protocol described by Rolsted et al. (2008). Resorufin as the reaction

product in the respective media or assay solution was used to

generate standard curves. Fluoroskan Ascent plate reader (Thermo

Fisher Scientific, Waltham, MA). Suitability of the EROD assay for

both species, human and mouse, was shown by comparing EROD

activities of liver microsomes for the two species (Gotz et al., 2012a).

Cells were treated with the synthetic AhR agonist 3-MC and the

environmentally relevant AhR agonist B(a)P dissolved in DMSO. The

standard incubation period for induction was 24 hours, as derived

from an EROD time course (Supplementary Figure S3 online), and

the final maximum solvent concentration was 0.2% unless otherwise

stated. All experiments were carried out three times in triplicate

using each three independent cell lots unless otherwise stated. For

experiments with HDAC inhibitor, TSA (0.5 mM in EtOH) cells were

coincubated with the respective inhibitor and B(a)P or respective

solvent for 16 hours.

Cell viability and protein content assessment

Assay kit for measurement of cell viability (Cell Titer Blue, Promega)

was applied as described by the manufacturer. Protein in monolayer

cell culture was determined using the CBQCA protein quantifi-

cation kit (Molecular Probes/Invitrogen) using bovine serum albumin

as reference protein at excitation and emission wavelength of

465 and 550 nm, respectively, on a Thermo Ascent Fluoroscan

plate reader.

Statistics

All experiments were conducted at least three times. Statistical

analyses for significance were performed using Student’s unpaired

t-test; Po0.05 was considered significant. Data are presented as

means±SD. LOQ was defined as the mean of blank measurements

plus nine times SD of the blank. Correlation analyses were

performed by using the GraphPad Prism 5.00 statistical software

(GraphPad Software, San Diego, CA).
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